

Outline of Presentation

- 0. Outline of the Great East Japan Earthquake
- Experience and Lessons learned from the Great East Japan Earthquake
- 2. Our challenge after the disaster
- 3. Conclusion
- 4. Way forward

Chapter 0. Outline of the Great East Japan Earthquake

Comparison with other Catastrophic Disasters

Historical Earthquake	Kanto	Hanshin	Sumatra	Chile	East Japan
Date	1923/9/1	1995/1/17	2004/12/26	2010/2/27	2011/3/11
Earthquake Magnitude	7. 9	7. 3	9. 1	8.8	9. 0
Japanese Intensity Scale	7	7	5~6	(1~ 5)	7
Casualties	105, 835	6, 400	220, 000	8 0 2	15, 600
Undiscovered Casualties	1	3	77, 000		4, 800
Cause of Casualties	Earthquake & Fire	Earthquake	Tsunami	Tsunami	Tsunami
Fully Collapsed Houses	109, 713	104, 000	139, 000 Aceh	150, 000	115, 000
Burned-out Houses	212, 353	7, 483	-	_	-
				Japan Internationa	Cooperation Agency

Chapter 1.

Experience and lessons learned from the Great East Japan

Japanese Experience ~Road Network~

People-oriented

Multifunction/Multilayer

Multidisciplinary approach

Resilient Road Network enables us to rehabilitate as soon as possible

- Construction of High-spec roads
- 2. Quick Recovery with assistance provided by local constructors
- 3. Quick Reconstruction with support of in-land constructors

Reliable Road Network makes it possible that emergency relief are smoothly provided.

Smooth Response

Multi-functioned Road

"Multidisciplinary approach" may reduce economic loss and realize resilient society.

Earthquake-induced Landslide at newly developed area

Torrent coming downstream from a collapsed reservoir

What Giant Dykes told us

~ Case of Taro Village ~

Name of disaster	Casualty
Meiji-sanriku Eq.	1867/2248(83%)
Syowa-sanriku Eq.	911/2773(33%)
Great East Japan Eq.	146/2466(5%)

Misunderstanding might invite tragedy.

(Photo: Asahi.com)

Chapter 2. Our challenge after the disaster

Keyword 1: People-oriented

WHY WERE THE REAGION HEAVILY AFFECTED?

Insufficient understanding of function of measure

Anticipated risk or Estimated disaster scale

Target

Evacuation plan/Response (Non-structure)

Disaster Education (Non-structure)

Sea wall (Structure)

Sastal Dike (Structure)

Level to which society should be protected

No perfect one single measure against any disaster

Great Hanshin-Awaji Earthquake (Mw=7.2)(17 January, 1995)

Category	Earthquake ground motion	Tsunami
Level 1	having a high possibility of occurrence within the design working life of the facilities concerned (1-2 times within its life)	having a high possibility of occurrence within the design working life of the facilities concerned (100 year interval)
<u>Level 2</u>	having an intensity of the maximum scale among those expected to occur	having an intensity of the maximum scale among those expected to occur (100 year interval)

Category	Targeted Tsunami	Functions to be required	Performance requirements
Level 1	100 year interval	(1)To save human lives(2)To protect assets(3)To maintain economic activities	Usability
Level 2	1000 year interval	 (1)To save human lives, combining with non- structure measures (2)To minimize economic damage (3)To prevent huge secondary disaster (4)To make it possible to quickly recover 	Repairability

Success Story on Bullet Trains

5 out of 27 trains operated at the highest speed of 169mi/hr.

No Casualty and No derailed Train car No damaged elevated tracks and tunnels

Disaster Risk Management of Bullet Train

Risk Literacy

Redundancy

Kaizen

(UrEDAS)

- I.Function maintenance for inland quakes
- II.Creation and Introduction of Redundant system
- III.Relentless revision, taking account for advance in seismology

(Anti-derailed device)

I. Development and deployment of devices

(Elevated Tracks)

I.Redundant Building standards established II.Retrofitting to structures and facility

Concept of Reconstruction

Realizing of Safe and Resilient Society

- Reconsideration of people-oriented measures (design scenarios and regulations/codes) (Dispelling of misunderstandings in structure measures)
- Urban Planning taking into consideration for multi-layer defense
- 3. Designing and construction of multi-purpose/ function countermeasure

Keyword 2: Multifunction/Multilayer

Keyword 3: Multidisciplinary

Urban Planning with a concept of multi-layer defense

Concept of "Disaster Reduction", not "Disaster Prevention"

- 1) From Structure measures to People-oriented measures
- 2From "Linear-base planning" to "Area-based planning"

Elevated highway blocked tsunami and reduced damage

3. Conclusion

Risk includes uncertainty and anticipation.

"Stopped thinking" may bring tremendous damage

Every infrastructures shall contribute to effective Disaster risk management (DRM).

People-oriented

Multifunction/Multilayer

Multidisciplinary approach

4. Way forward

Toward unexpected disaster.....

- A) Preparation of materials to convince policymakers to accept the new concept
- B) Preparation of materials to show incentive to additionally implement DRM on routine works by including other sectors

Thank you for your attention

JICA must endeavor to effectively shear the valuable experience and lessons with the international community.

international Cooperation Agency

Reference

Main damage of infrastructure

Items	Number
Casualty/Missing Evacuee	15,365 / 8,206 468,653 (Peak)
Building Damage	Completely Destroyed 111,044 houses Partly Destroyed 71,936 houses Partially Damaged 320,118 houses Burned Houses 261 houses
Port Damage	International and Key ports : 18 ports Local ports: 18 ports
Coastal Dyke Damage	190km out of 300km
Rode Infrastructure Damage	15 Highways, 69 national road 641 local roads
Inundation Damage	521 km ²

How to determine horizontal seismic coefficient

 $kh = Cz \cdot Cs \cdot kh_0$

Category	Area A	Area B	Area C
Compensation Coefficient	1. 00	0. 85	0.70

Category	Compensation Coefficient	
Very important facility	1.0	
General facility	0.70.0	
Huge rigid structure	0.7~0.8	
Earth structure	0.5~0.7	

Category	Category I	Category II	Category III
k_{h0}	0. 16	0. 20	0. 24

Engineering effort to reduce any risk by eliciting misunderstanding

How to minimize limitation in structures' function

Thorough redundancy

Safe and Resilient Society

Earthquake ground motion (Level 1)

Probability of exceedance within a design working life of a structure concerned

0.5

(Twice within its life)

CASE A (Design working life: 50 years)

$$\left(1 - \frac{1}{X}\right)^{50} = 0.5 \implies X = 75 \text{ years}$$

eration Agency

How to determine levels of earthquake ground motion

O(f)=S(f)P(f)G(f)

Fourier amplitude spectrum

Statistical Green's Function

Fourier Spectrum

Gutenberg-Richter Law

Earthquake Ground Motion (Level 2)

Distribution of Asperity

Historically-worst disaster

Larger than M6.5 in-land earthquake

Design seismic coefficient for infrastructure types

	Level 1	Level 2
Building	0.2 (196 gal)	1.0 (980 gal)
Rode (Class I)	0.08 (78.4 gal)	0.16 (156.8 gal)
Rode (Class III)	0.12 (117.6 gal)	0.24 (235.2 gal)
Bridge	0.2 (196gal)	2.0 (1960 gal)
Gas Reservoir Facility	0.3 (294 gal)	0.6 (588 gal)

national Cooperation Agency

Points not to encounter a pitfall

Psychologically-based Information delivery to community

Image of Tsunami Levels and of resilient structure

Japan International Cooperation Agency

Pre-Improved infrastructures avoid tremendous damage from the disaster

Effect of reinforcement

Japan International Cooperation Agency

Designing and construction of multi-purpose/-function measure

(1) Highway to be used as evacuation space

Chilean preparedness

Japan International Cooperation Agency

3. Conclusion

Importance to take effective countermeasures

- Recognize of limitation in function, taking account for the worst scenario
- Continuous identification of risks possible due to changes in scientific and social aspect
- Secure of Redundancy (Multi-function measure/Multi-defense) for reducing risks

Importance to constantly continue improving any measures in an appropriate manner.

Importance to balance finance and technique in realizing effective DRM through mainstreaming